

Class IX Physics Vacation Worksheet-2

- 1.Define acceleration and state its SI unit. For motion along a straight line, when do we consider the acceleration to be (i) positive (ii) negative? Give an example of a body in uniform acceleration.
- 2. Find the total displacement of the body from the following graph:

- 3. A car travels at 54 km/h for first 20 s, 36 km/h for next 30 s and finally 18 km/h for next 10 s. Find its average speed.
- 4. Define acceleration and give its SI unit. When is acceleration of a body negative? Give two examples of situations in which acceleration of the body is negative.
- 5. Distinguish between uniform motion and non, uniform motion. Is uniformly accelerated motion uniform motion? Give one example each of uniform and non-uniform motion.
- 6. The speedometer readings of a car are shown below. Find the acceleration of the car and its displacement.

Time Speedometer 9:25 am 36 km/h 9:45 am 72 km/h

- 7. Define uniform circular motion and give example of it. Why is it called accelerated motion?
- 8. The graph given alongside shows how the speed of a car changes with time.
 - (i) What is the initial speed of the car?

- (ii) What is the maximum speed attained by the car?
- (iii) Which part of the graph shows zero acceleration?
- (iv) Which part of the graph shows varying retardation?
- (v) Find the distance travelled in first 8 hours.

- 9. Study the velocity-time graph and calculate.
 - (a) The acceleration from A to B
 - (b) The acceleration from B to C
 - (c) The distance covered in the region ABE
 - (d) The average velocity from C to D
 - (e) The distance covered in the region BCFE

10. The following table gives the data about motion of a car.

Time (h) 11.00 11.30 12.00 12.30

Distance (km) 0 30 30 65 100

Plot the graph.

- (i) Find the speed of the car between 12.00 hours and 12.30 hours.
- (ii) What is the average speed of the car?
- (iii) Is the car's motion an example of uniform motion? Justify.
- 11. (a) Derive the equation of motion v = u + at, using graphical method.
 - (b) A train starting from rest attains a velocity of 72 km/h in 5 minutes.

1.00

Assuming the acceleration is uniform, find

- (i) the acceleration.
- (ii) the distance travelled by the train for attaining this velocity.